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Shear representations of beam transfer matrices
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The beam transfer matrix, often called theABCD matrix, is one of the essential mathematical instruments
in optics. It is a unimodular matrix whose determinant is 1. If all the elements are real with three independent
parameters, this matrix is a 232 representation of the group Sp~2!. It is shown that a realABCD matrix can
be generated by two shear transformations. It is then noted that, in para-axial lens optics, the lens and
translation matrices constitute two shear transformations. It is shown that a system with an arbitrary number of
lenses can be reduced to a system consisting of three lenses.
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I. INTRODUCTION

In a recent series of papers@1,2#, Han et al. studied pos-
sible optical devices capable of performing matrix operatio
of the following types:

T5S 1 a

0 1D , L5S 1 0

b 1D . ~1.1!

Since these matrices perform shear transformations in a
dimensional space@3#, we shall call them ‘‘shear’’ matrices
However, Hanet al. were only interested in the ‘‘slide-rule
property’’ of the shear matrices which convert multiplic
tions into additions. TheT matrix has the property

T1T25S 1 a1

0 1 D S 1 a2

0 1 D 5S 1 a11a2

0 1 D ~1.2!

and theL matrix has a similar ‘‘slide-rule’’ property. This
property is valid only if we restrict computations toT-type
matrices orL-type matrices.

In the present paper, we study what happens to theABCD
matrix if we use bothL- and T-type shear matrices, whic
takes the form

G5S A B

C DD , ~1.3!

where the elementsA, B, C, andD are real numbers satis
fying AD2BC51. Because of this condition, there are thr
independent parameters.

We are interested in constructing the most general form
theABCD matrix in terms of the two shear matrices given
Eq. ~1.1!. 232 matrices with the above property form th
symplectic group Sp~2!. We are quite familiar with the con
ventional representation of the 232 representation of the
Sp~2! group. This group is like~isomorphic to! SU~1,1!
which is the basic scientific language for squeezed state
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light @4#. This group is also applicable to other branches
optics, including polarization optics, interferometers, lay
optics @5#, and para-axial optics@6,7#. The Sp~2! symmetry
can be found in many other branches of physics, includ
canonical transformations@3#, special relativity@4#, Wigner
functions@4#, and coupled harmonic oscillators@8#.

This group, consisting of 232 real matrices, also has
very rich mathematical contents. There are still hidden ma
ematical theorems which can be useful in managing our
culations in physics. Specifically, we use group theory
represent the most general form of theABCD matrix in
terms of the shear matrices given in Eq.~1.1!. With this point
in mind, we propose to write the 232 ABCD matrices in
the form

TLTLT . . . . ~1.4!

Since each matrix in this chain contains one parameter, th
are N parameters forN matrices in the chain. On the othe
hand, since bothT and L are real unimodular matrices, th
final expression is also real and unimodular. This means
the expression contains only three independent parame
Then we are led to the question of whether there is a sho
chain which can accommodate the most general form of
232 matrices. We shall conclude in this paper that six m
trices are needed for the most general form, with three in
pendent parameters.

We are not the first ones to study this problem. In 19
Sudarshanet al. raised this question in connection with par
axial lens optics@7#. They observed that the lens and tran
lation matrices are in the form of matrices given in Eq.~1.1!.
In fact, the notationsL and T for the shear matrices of Eq
~1.1! are derived from the words ‘‘lens’’ and ‘‘translation,’
respectively, in para-axial lens optics. Sudarshanet al. con-
cluded that three lenses are needed for the most general
for the 232 matrices for the symplectic group. Of cours
their lens matrices are appropriately separated by transla
matrices. This will make the total number of matrices s
However, in their paper Sudarshanet al. stated that the cal-
culation of each lens or translation parameter is ‘‘tedious

In the present paper, we make this calculation less ted
by using a decomposition of theABCD matrix derivable
©2001 The American Physical Society06-1
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from Bargmann’s paper@9#. As far as the number of lenses
concerned, we reach the same conclusion as that of Su
shan et al. However, we complete the calculation of len
parameter for each lens and the translation parameter
each translation matrix, in terms of the three independ
parameters of theABCD matrix. In other words, we com
plete the calculation which Sudarshanet al. started in 1985.

In Sec. II, it is shown that the most general form of t
Sp~2! matrices orABCD matrices can be decomposed in
one symmetric matrix and one orthogonal matrix. It is sho
that the symmetric matrix can be decomposed into four sh
matrices and the orthogonal matrix into three. In Sec. III, i
noted that the mathematical device developed in Sec.
directly applicable to para-axial lens optics. It is shown th
the most general lens system can be reduced to six shea
matrices with three lens matrix. In Sec. IV, we discuss ot
areas of optical sciences where the shear representatio
the group Sp~2! may serve useful purposes. We also disc
a possible extension of theABCD matrix to a complex rep-
resentation, which will enlarge the group Sp~2! to a larger
group.

Even though we are dealing with real 232 matrices, we
are using mathematical operations not too familiar in opt
In Appendix A, we show that there are two different ways
representing the Sp~2! group. One is a conventional repre
sentation combining squeeze and rotations. The other i
use two shears and one squeeze. It is shown that thes
equivalent. In Appendix B, we use the Bargmann decom
sition @9# to prove that the most general form of theABCD
matrix can be written as a product of one symmetric ma
and one antisymmetric matrix.

II. DECOMPOSITIONS AND RECOMPOSITIONS

In this paper we are interested in writing the most gene
form of the matrixG of Eq. ~1.3! as a chain of the shea
matrices. It is shown in Appendix A that this is possible
terms of the generators of the Sp~2! group. Sudarshanet al.
s.
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@7# studied this problem in connection with para-axial le
optics. Their approach was of course correct, however t
concluded that the complete calculation is ‘‘tedious.’’

We propose to complete this well-defined calculation
decomposing the matrixG into one symmetric matrix and
one orthogonal matrix. For this purpose, let us consider
most general form of an Sp~2! matrix by referring to Appen-
dix B. It is shown that the matrixG can be written as

G5S cosf 2sinf

sinf cosf D S eh 0

0 e2hD S cosl 2sinl

sinl cosl D ,

~2.1!

where the three free parameters aref, h, andl. These ma-
trices are generated from the squeeze representation of S~2!
given in Eq.~A6!. The real numbersA, B, C, andD in Eq.
~1.3! can be written in terms of these three parameters. C
versely, the parametersf, h, andl can be written in terms of
A, B, C, andD, with the condition thatAD2BC51. This
matrix is written in terms of squeeze and rotation matric
We write the last matrix of Eq.~2.1! as

S cosf sinf

2sinf cosf D S cosu 2sinu

sinu cosu D , ~2.2!

with l5u2f. Instead ofl,u becomes an independent p
rameter.

The matrix G can now be written as two matrices, on
symmetric and the other orthogonal,

G5SR, ~2.3!

with

R5S cosu 2sinu

sinu cosu D . ~2.4!

The symmetric matrixS takes the form@2#
S5S coshh1~sinhh!cos~2f! ~sinhh!sin~2f!

~sinhh!sin~2f! coshh2~sinhh!cos~2f! D . ~2.5!
in
Our procedure is to writeSandR separately as shear chain
Let us first consider the rotation matrix.

In terms of the shears, the rotation matrixR can be written
as @10#.

R5S 1 2tan~u/2!

0 1 D S 1 0

sinu 1D S 1 2tan~u/2!

0 1 D .

~2.6!

This expression is in the form ofTLT, but it can also be
written in the form ofLTL. If we take the transpose an
change the sign ofu, R becomes
R85S 1 0

tan~u/2! 1D S 1 2sinu

0 1 D S 1 0

tan~u/2! 1D .

~2.7!

Both R andR8 are the same matrix, but are decomposed
different ways.

As for the two-parameter symmetric matrix of Eq.~2.5!,
we start with a symmetricLTLT form

S5S 1 0

b 1D S 1 a

0 1D S 1 0

a 1D S 1 b

0 1D , ~2.8!

which can be combined into one symmetric matrix:
6-2
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S5S 11a2 b~11a2!1a

b~11a2!1a 112ab1b2~11a2!
D . ~2.9!

By comparing Eqs.~2.5! and ~2.9!, we can compute the pa
rametersa andb in terms ofh andf. The result is

a56A~coshh21!1~sinhh!cos~2f!,

b5
~sinhh!sin~2f!7A~coshh21!1~sinhh!cos~2f!

coshh1~sinhh!cos~2f!
.

~2.10!

This matrix can also be written in aTLTL form:

S85S 1 b8

0 1 D S 1 0

a8 1D S 1 a8

0 1 D S 1 0

b8 1D . ~2.11!

Then the parametersa8 andb8 are

a856A~coshh21!2~sinhh!cos~2f!,

b85
~sinhh!sin~2f!7A~coshh21!2~sinhh!cos~2f!

coshh2~sinhh!cos~2f!
.

~2.12!

The difference between the two sets of parametersab and
a8b8 is the sign of the parameterh. This sign change mean
that the squeeze operation is in a direction perpendicula
the original direction. In choosingab or a8b8, we will also
have to take care that the sign of the quantity inside
square root is positive. If cos(2f) is sufficiently small, both
sets are acceptable. On the other hand, if the absolute v
of (sinhh)cos(2f) is greater than (coshh21), only one of
the sets,ab or a8b8, is valid.

We can now combine theS and R matrices in order to
construct theABCD matrix. In so doing, we can reduce th
number of matrices by one:

SR5S 1 0

b 1D S 1 a

0 1D S 1 0

a 1D S 1 b2tan~u/2!

0 1 D
3S 1 0

sinu 1D S 1 2tan~u/2!

0 1 D . ~2.13!

We can also combine making the productS8R8. The result is

S 1 b8

0 1 D S 1 0

a8 1D S 1 a8

0 1 D S 1 0

b81tan~u/2! 1D
3S 1 2sinu

0 1 D S 1 0

tan~u/2! 1D . ~2.14!

For the combinationSR of Eq. ~2.13!, two adjoiningT ma-
trices were combined into oneT matrix. Similarly, two L
matrices were combined into one for theS8R8 combination
of Eq. ~2.14!.

In both cases, there are six matrices, consisting of threT
matrices and threeL matrices. This is the minimum numbe
of shear matrices needed for the most general form for
ABCD matrix with three independent parameters.
05660
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III. PARA-AXIAL LENS OPTICS

So far, we have been investigating the possibilities of r
resenting theABCD matrices in terms of the two shear m
trices. Indeed, thisABCD matrix has a deep root in ra
optics @6#.

In para-axial lens optics, the lens and translation matri
take the forms

L5S 1 0

21/f 1D , T5S 1 s

0 1D , ~3.1!

respectively. In Sec. I, this was what we had in mind wh
we defined the shear matrices ofL and T types. These ma-
trices are applicable to the two-dimensional space of

S y

mD , ~3.2!

wherey measures the height of the ray, whilem is the slope
of the ray.

The one-lens system consists of aTLT chain. The two-
lens system can be written asTLTLT. If we add more lenses
the chain becomes longer. However, the net result is
ABCD matrix with three independent parameters. In Sec.
we asked the question of how manyL and T matrices are
needed to represent the most general form of theABCD
matrix. Our conclusion was that six matrices, with three le
matrices, are needed. The chain can be eitherLTLTLT or
TLTLTL. In either case, three lenses are required. This c
clusion was obtained earlier by Sudarshanet al. in 1985@7#.
In this paper, using the decomposition technique deriv
from the Bargmann decomposition, we were able to comp
the parameter of each shear matrix in terms of the th
parameters of theABCD matrix.

In para-axial optics, we often encounter special forms
the ABCD matrix. For instance, the matrix of the form o
Eq. ~A4! is for pure magnification@11#. This is a special case
of the decomposition given forS and S8 in Eqs. ~2.9! and
~2.11! respectively, withf50. However, ifh is positive, the
seta8b8 is not acceptable because the quantity in the squ
root in Eq. ~2.12! becomes negative. For theab set, the
parameters are related by

a56~eh21!1/2, b57e2h~eh21!1/2. ~3.3!

The decomposition of theLTLT type is given in Eq.~2.8!.
We often encounter the triangular matrices of the fo

@12#

S A B

0 D D or S A 0

C DD . ~3.4!

However, from the condition that their determinant be
these matrices take the form

S eh B

0 e2hD or S eh 0

C e2hD . ~3.5!
6-3
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The first and second matrices are used for focal and teles
conditions, respectively. We call them the matrices ofB and
C types, respectively. The question then is how many sh
matrices are needed to represent the most general form
these matrices. The triangular matrix of Eq.~3.4! is dis-
cussed frequently in the literature@11,12#. In the present pa-
per, we are interested in using only shear matrices as
ments of decomposition.

Let us consider theB type. It can be constructed either
the form

S eh 0

0 e2hD S 1 e2hB

0 1 D ~3.6!

or

S 1 ehB

0 1 D S eh 0

0 e2hD . ~3.7!

The number of matrices in the chain can be either four
five. We can reach a similar conclusion for the matrix of t
C type.

IV. OTHER AREAS OF OPTICAL SCIENCE

We write theABCD matrix for the ray transfer matrix
@11#. There are many ray transfers in optics other than pa
axial lens optics. For instance, a laser resonator with sph
cal mirrors is exactly like para-axial lens optics if the radi
of the mirror is sufficiently large@13#.

If wave fronts with phase are taken into account, or
Gaussian beams, the elements of theABCD matrix become
complex@14,15#. In this case, the matrix operation can som
times be written as

w85
Aw1B

Cw1D
, ~4.1!

wherew is a complex number with two real parameters. T
is precisely the bilinear representation of the six-param
Lorentz group@9#. This bilinear representation was discuss
in detail for polarization optics by Hanet al. @16#. This form
of representation is also useful in laser mode-locking a
optical pulse transmission@15#.

The bilinear form of Eq.~4.1! is equivalent to the matrix
transformation@16#

S v18

v28
D 5S A B

C DD S v1

v2
D , ~4.2!

with

w5
v1

v2
. ~4.3!

This bilinear representation deals only with the ratio of t
first component to the second in the column vector to wh
the ABCD matrix is applicable. In polarization optics, fo
instance,v1 and v2 correspond to the two orthogonal el
ments of polarization.
05660
pe

ar
of

le-

r

a-
ri-

r

-

s
er
d

d

h

Indeed, this six-parameter group can accommodate a w
spectrum of optics and other sciences. Recently, the 232
Jones matrix and 434 Mueller matrix were shown to be 2
32 and 434 representations of the Lorentz group@1#. Also
recently, Monzo´n and Sa´nchez showed that multilayer optic
could serve as an analog computer for special relativity@5#.
More recently, it was noted that two-beam interferomet
can also be formulated in terms of the Lorentz group@17#.

V. CONCLUDING REMARKS

The Lorentz group was introduced to physics as a ma
ematical device to deal with Lorentz transformations in s
cial relativity. However, this group is becoming the maj
language in optical sciences. With the appearance
squeezed states as two-photon coherent states@18#, the Lor-
entz group was recognized as the theoretical backbon
coherent states as well as generalized coherent states@4#.

In their recent paper@2#, Hanet al. studied in detail pos-
sible optical devices which produce the shear matrices of
~1.1!. This effect is due to the mathematical identity call
‘‘Iwasawa decomposition’’@19,20#. The shear matrices o
Eq. ~1.1! are products of Iwasawa decompositions. Since
used those shear matrices to produce the most general
of 232 unimodular matrices with three real parameters,
this paper we are performing an inverse process of
Iwasawa decomposition.

It should be noted that the decomposition we used in
paper has a specific purpose. If purposes are different,
ferent forms of decomposition may be employed. For
stance, decomposition of theABCD matrix into shear,
squeeze, and rotation matrices could serve useful purp
for canonical operator representations@12,21#. The amount
of calculation seems to depend on the choice of decomp
tion.

Group theory in the past was understood as an abs
mathematics. In this paper, we have seen that it can be
as a calculational tool.

APPENDIX A: SQUEEZE AND SHEAR
REPRESENTATIONS OF THE Sp„2… GROUP

The ABCD matrix is a shear representation of the gro
Sp~2!. The shear matrices of Eq.~1.1! can be written as

S 1 s

0 1D 5exp~2 isX1!,

~A1!

S 1 0

u 1D 5exp~2 iuX2!,

with

X15S 0 i

0 0D , X25S 0 0

i 0D , ~A2!

which serve as the generators. If we introduce a third ma
6-4
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X35S i 0

0 2 i D , ~A3!

it generates squeeze transformations:

exp~2 ihX3!5S eh 0

0 e2hD . ~A4!

The matricesX1 , X2, andX3 form the following closed se
of commutation relations:

@X1 ,X2#5 iX3 , @X1 ,X3#522iX1 ,
~A5!

@X2 ,X3#52iX2 .

The generatorsX1 and X2 produce the third generatorX3.
Then these three generators form a closed set of comm
tion relations for the Sp~2! group @3,10,22#.

The Sp~2! group can be generated by two seemingly d
ferent sets of generators, namely the shear-squeeze ge
tors of Eqs.~A2! and ~A3! and the squeeze-rotation gener
tors, which are conventionally expressed as

B15
1

2 S i 0

0 2 i D , B25
1

2 S 0 i

i 0D ,

~A6!

J5
1

2 S 0 2 i

i 0 D ,

when applied to a two-dimensionalxy space. TheJ matrix
generates rotations around the origin whileB1 and B2 gen-
erate squeezes along thexy axes and along axes rotated b
45°, respectively. It is clear that one representation can
transformed into the other at the level of generators. T
generators of Eqs.~A2! and ~A3! can be written as

X15B22J, X25B21J, X352B1 , ~A7!

whereJ, B1, andB2 are given in Eq.~A6!.

APPENDIX B: BARGMANN DECOMPOSITION

In his 1947 paper@9#, Bargmann considered

W5S a b

b* a* D , ~B1!

with aa* 2bb* 51. There are three independent para
eters. Bargmann then observed thata andb can be written
as

a5~coshh!e2 i (f1l), b5~sinhh!e2 i (f2l). ~B2!

ThenW can be decomposed into

W5S e2 if 0

0 eifD S coshh sinhh

sinhh coshh D S e2 il 0

0 eilD .

~B3!
05660
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In order to transform the above expression into the deco
position of Eq.~2.1!, we take the conjugate of each of th
matrices with

C15
1

A2
S 1 i

i 1D . ~B4!

ThenC1WC1
21 leads to

S cosf 2sinf

sinf cosf D S coshh sinhh

sinhh coshh D S cosl 2sinl

sinl cosl
D .

~B5!

We can then take another conjugate with

C25
1

A2
S 1 1

21 1D . ~B6!

Then the conjugateC2C1WC1
21C2

21 becomes

S cosf 2sinf

sinf cosf D S eh 0

0 e2hD S cosl 2sinl

sinl cosl
D . ~B7!

This expression is the same as the decomposition give
Eq. ~2.1!.

The combined effect ofC2C1 is

C2C15
1

A2
S eip/4 eip/4

2e2 ip/4 e2 ip/4D . ~B8!

If we take the conjugate of the matrixW of Eq. ~B1! using
the above matrix, the elements of theABCD matrix become

A5
1

2
~a1a* 1b1b* !,

B5
2 i

2
~a2a* 1b2b* !,

~B9!

C5
i

2
~a2a* 2b1b* !,

D5
1

2
~a1a* 2b2b* !.

We can see from this expression that all the elements in
ABCD matrix are real numbers. Indeed, theab representa-
tion of Eq. ~B1! is equivalent to theABCD representation,
whose components can be written as

A5~coshh!cos~f1l!1~sinhh!cos~f2l!,

B52~coshh!sin~f1l!2~sinhh!sin~f2l!,
~B10!

C5~coshh!sin~f1l!2~sinhh!sin~f2l!,

D5~coshh!cos~f1l!2~sinhh!cos~f2l!.
6-5
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