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Shear representations of beam transfer matrices
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The beam transfer matrix, often called tA8 CD matrix, is one of the essential mathematical instruments
in optics. It is a unimodular matrix whose determinant is 1. If all the elements are real with three independent
parameters, this matrix is aX22 representation of the group @p It is shown that a reaABCD matrix can
be generated by two shear transformations. It is then noted that, in para-axial lens optics, the lens and
translation matrices constitute two shear transformations. It is shown that a system with an arbitrary number of
lenses can be reduced to a system consisting of three lenses.
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[. INTRODUCTION light [4]. This group is also applicable to other branches of
optics, including polarization optics, interferometers, layer

In a recent series of papéis,2], Hanet al. studied pos- optics[5], and para-axial opticEs,7]. The Sf§2) symmetry
sible optical devices capable of performing matrix operationsan be found in many other branches of physics, including

of the following types: canonical transformations3], special relativity[4], Wigner
functions[4], and coupled harmonic oscillatof8].
1 a 10 This group, consisting of 22 real matrices, also has a
T= , = . (1.1 ) - S i
0 1 b 1 very rich mathematical contents. There are still hidden math

ematical theorems which can be useful in managing our cal-
Since these matrices perform shear transformations in a twaulations in physics. Specifically, we use group theory to
dimensional spacgS], we shall call them “shear” matrices. represent the most general form of tAd8CD matrix in
However, Hanet al. were only interested in the “slide-rule terms of the shear matrices given in Ef.1). With this point
property” of the shear matrices which convert multiplica- in mind, we propose to write the>X22 ABCD matrices in

tions into additions. Th& matrix has the property the form
1 a;\(1l & 1 a;ta TLTLT.... 1.9
TaTo= ( o 1/lo 1/ lo 1 (-2

Since each matrix in this chain contains one parameter, there
and theL matrix has a similar “slide-rule” property. This areN parameters foN matrices in the chain. On the other
property is valid only if we restrict computations Tetype  hand, since botfT andL are real unimodular matrices, the
matrices orL-type matrices. final expression is also real and unimodular. This means that

In the present paper, we study what happens t&MBED  the expression contains only three independent parameters.
matrix if we use bothL- and T-type shear matrices, which Then we are led to the question of whether there is a shortest

takes the form chain which can accommodate the most general form of the
2% 2 matrices. We shall conclude in this paper that six ma-
_ A B trices are needed for the most general form, with three inde-
G= : 1.3
C D pendent parameters.

We are not the first ones to study this problem. In 1985,
where the elementd, B, C, andD are real numbers satis- Sudarshamt al. raised this question in connection with para-
fying AD—BC=1. Because of this condition, there are threeaxial lens optic§7]. They observed that the lens and trans-
independent parameters. lation matrices are in the form of matrices given in Eg1).

We are interested in constructing the most general form ofn fact, the notationd and T for the shear matrices of Eq.
the ABCD matrix in terms of the two shear matrices given in (1.1) are derived from the words “lens” and “translation,”
Eqg. (1.2). 2X2 matrices with the above property form the respectively, in para-axial lens optics. Sudarsbaal. con-
symplectic group S{2). We are quite familiar with the con- cluded that three lenses are needed for the most general form
ventional representation of thex2 representation of the for the 2X2 matrices for the symplectic group. Of course
Sp(2) group. This group is like(isomorphic t9 SU(1,1)  their lens matrices are appropriately separated by translation
which is the basic scientific language for squeezed states @hatrices. This will make the total number of matrices six.

However, in their paper Sudarshanal. stated that the cal-

culation of each lens or translation parameter is “tedious.”
*Electronic address: baskal@newton.physics.metu.edu.tr In the present paper, we make this calculation less tedious
TElectronic address: yskim@physics.umd.edu by using a decomposition of thABCD matrix derivable
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from Bargmann'’s papd®]. As far as the number of lenses is [7] studied this problem in connection with para-axial lens
concerned, we reach the same conclusion as that of Sudasptics. Their approach was of course correct, however they
shanet al. However, we complete the calculation of lens concluded that the complete calculation is “tedious.”
parameter for each lens and the translation parameter for We propose to complete this well-defined calculation by
each translation matrix, in terms of the three independentiecomposing the matri% into one symmetric matrix and

COSN  —SinA
SinA  COSA

cos¢p —sing
sing cos¢

parameters of théBCD matrix. In other words, we com- one orthogonal matrix. For this purpose, let us consider the
plete the calculation which Sudarshenal. started in 1985. most general form of an $§) matrix by referring to Appen-

In Sec. ll, it is shown that the most general form of thedix B. It is shown that the matrixs can be written as
Sp(2) matrices orABCD matrices can be decomposed into
one symmetric matrix and one orthogonal matrix. It is shown e” 0
that the symmetric matrix can be decomposed into four shear 0 e7
matrices and the orthogonal matrix into three. In Sec. lll, itis
noted that the mathematical device developed in Sec. Il is
directly applicable to para-axial lens optics. It is shown thatvhere the three free parameters ez, and\. These ma-
the most general lens system can be reduced to six shearlikéces are generated from the squeeze representation(2f Sp
matrices with three lens matrix. In Sec. IV, we discuss othe@iven in Eq.(A6). The real number#, B, C, andD in Eq.
areas of optical sciences where the shear representation @3 can be written in terms of these three parameters. Con-
the group Sf2) may serve useful purposes. We also discusersely, the parametets », and\ can be written in terms of
a possible extension of th®BCD matrix to a complex rep- A, B, C, andD, with the condition thahD—-BC=1. This
resentation, which will enlarge the group (8pto a larger ~ Mmatrix is written in terms of squeeze and rotation matrices.

group. We write the last matrix of Eq2.1) as

Even though we are dealing with reak2 matrices, we . .
are using mathematical operations not too familiar in optics. cos¢  sing)[cosd —sing 2.2
In Appendix A, we show that there are two different ways of —sing cos¢/\sing cosh |’ '

representing the $p) group. One is a conventional repre-

sentation combining squeeze and rotations. The other is toith A= 6— ¢. Instead of\,# becomes an independent pa-
use two shears and one squeeze. It is shown that these d&gameter.

equivalent. In Appendix B, we use the Bargmann decompo- The matrixG can now be written as two matrices, one
sition[9] to prove that the most general form of tACD  symmetric and the other orthogonal,

matrix can be written as a product of one symmetric matrix

and one antisymmetric matrix. G=SR 2.3
with
Il. DECOMPOSITIONS AND RECOMPOSITIONS
In this paper we are interested in writing the most general _ cosf —sind (2.4
form of the matrixG of Eq. (1.3) as a chain of the shear sind cosé | '
matrices. It is shown in Appendix A that this is possible in
terms of the generators of the @pgroup. Sudarshaat al. ~ The symmetric matrixS takes the fornj2]
|
B coshn+(sinhn)cog2¢) (sinh#)sin(2¢) )
B (sinhp)sin(2¢) coshy—(sinhy)cog24¢) /" 29
|
Our procedure is to writ€ andR separately as shear chains. 1 o) ( 1 —sin@ 1 o)
Let us first consider the rotation matrix. R'= .
tan(#/2) 1/\0 1 tan(6/2) 1
In terms of the shears, the rotation matRixan be written n6/2) n6/2) 2.7
as[10].

Both RandR’ are the same matrix, but are decomposed in
1 —tan(g/2)\( 1 0\[1 —tan(6/2) different ways. _ _
=0 1 ine 1110 1 i As for the two-parameter symmetric matrix of EQ.5),
sin we start with a symmetric TLT form

(2.6
1 0\/1 a\/1 O\/1 b
This expression is in the form OfFLT, but it can also be S= b 1) o 1/la 1 (0 1)' (2.8
written in the form of LTL. If we take the transpose and
change the sign of, R becomes which can be combined into one symmetric matrix:
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1+a? b(1+a%+a
S= b(1+a%+a 1+2ab+b?1+a?))

(2.9

By comparing Eqgs(2.5 and(2.9), we can compute the pa-

rametersa andb in terms of » and ¢». The result is

a=*(coshy—1)+(sinhn)cog24¢),

b= (sinh#)sin(2¢) + \/(coshy— 1) + (sinh7)cog 2¢)

coshn+(sinhn)cog2¢) '
(2.10
This matrix can also be written in BLTL form:
) 1 b'\/1 0\/1 a'\/1 O
S_01a'101|o'1'(2'1])

Then the paramete&’ andb’ are

a’'=*/(coshy—1)—(sinh7)cog2¢),

,_ (sinhp)sin(2¢)F V(coshy—1)—(sinh7)cog2¢)
b’= coshy— (sinhn)cog2¢) '
(2.12
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Ill. PARA-AXIAL LENS OPTICS

So far, we have been investigating the possibilities of rep-
resenting theABCD matrices in terms of the two shear ma-
trices. Indeed, thisABCD matrix has a deep root in ray
optics[6].

In para-axial lens optics, the lens and translation matrices
take the forms

1 0 1 s
L_—llf 1)’ T_o 1)’

respectively. In Sec. |, this was what we had in mind when
we defined the shear matrices lofand T types. These ma-
trices are applicable to the two-dimensional space of

y
m L
wherey measures the height of the ray, whiteis the slope
of the ray.
The one-lens system consists off& T chain. The two-
lens system can be written @& TLT. If we add more lenses,

the chain becomes longer. However, the net result is one
ABCD matrix with three independent parameters. In Sec. Il,

(3.

(3.2

The difference between the two sets of paramegdrsand we asked the question of how mahyand T matrices are

a’b’ is the sign of the parametey. This sign change means needed to represent the most general form of ARCD

that the squeeze operation is in a direction perpendicular tQ__ - ! . . :
e R . ) i matrix. Our conclusion was that six matrices, with three lens
the original direction. In choosingb or a’b’, we will also

have to take care that the sign of the quantity inside th (atrices, are needed. The chain can be eithEL TLT or

TLTLTL In either case, three lenses are required. This con-

square root is positive. If cosff) is sufficiently small, both

sets are acceptable. On the other hand, if the absolute val

of (sinh#n)cos(2p) is greater than (cosh—1), only one of
the setsab or a’b’, is valid.
We can now combine th& and R matrices in order to

construct theABCD matrix. In so doing, we can reduce the

number of matrices by one:

1 0\/1 a\/1 0\/1 b—tan6/2)
b 1/)\0 1/la 1/\0 1

( 1 0)(1 —tar(&/Z))
x sind 1/\0 1 '

We can also combine making the prod&R’. The result is

1 0\/1 a’ 1 0
a’ 1/\0 1)\b'+tan(6/2) 1

1 -—siné 1 0
0 1 tan(0/2) 1)

o]

(2.13

1 b
0 1

X

(2.19

For the combinatiorSR of Eq. (2.13, two adjoiningT ma-
trices were combined into on€ matrix. Similarly, two L
matrices were combined into one for tBER’ combination
of Eq. (2.14.

In both cases, there are six matrices, consisting of tiiree
matrices and threk matrices. This is the minimum number
of shear matrices needed for the most general form for the

ABCD matrix with three independent parameters.

clusion was obtained earlier by Sudarstedral. in 1985[7].

Y8 this paper, using the decomposition technique derived

from the Bargmann decomposition, we were able to compute
the parameter of each shear matrix in terms of the three
parameters of th&BCD matrix.

In para-axial optics, we often encounter special forms of
the ABCD matrix. For instance, the matrix of the form of
Eq. (A4) is for pure magnificatiofil1]. This is a special case
of the decomposition given fos and S’ in Egs. (2.9 and
(2.1 respectively, withp=0. However, ify is positive, the
seta’b’ is not acceptable because the quantity in the square
root in Eq. (2.12 becomes negative. For theb set, the
parameters are related by

a==+(e"-1)¥2 b=xe "(e’-1)¥2 (3.3
The decomposition of theTLT type is given in Eq(2.8).
We often encounter the triangular matrices of the form

[12]
A B A O
o o/ ¥ \c ol
However, from the condition that their determinant be 1,
these matrices take the form
0
e "’

e” B e”
0o e % lc

(3.9

(3.5
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The first and second matrices are used for focal and telescope Indeed, this six-parameter group can accommodate a wide
conditions, respectively. We call them the matriceBaind  spectrum of optics and other sciences. Recently, the? 2

C types, respectively. The question then is how many shealones matrix and 44 Mueller matrix were shown to be 2
matrices are needed to represent the most general form of2 and 4x 4 representations of the Lorentz grougd. Also
these matrices. The triangular matrix of E@.4) is dis- recently, Monza and Sachez showed that multilayer optics
cussed frequently in the literatufg1,12. In the present pa- could serve as an analog computer for special relat]dty

per, we are interested in using only shear matrices as elédore recently, it was noted that two-beam interferometers

ments of decomposition. can also be formulated in terms of the Lorentz grLp|.
Let us consider th® type. It can be constructed either in
the form V. CONCLUDING REMARKS
e 0 )1 e’B 3.6 The Lorentz group was introduced to physics as a math-
0 e 7/\0 1 ' ematical device to deal with Lorentz transformations in spe-
cial relativity. However, this group is becoming the major
or language in optical sciences. With the appearance of
1 e”B\le” O squeezed states as two-photon coherent sfag8sthe Lor-
( € )(e ) 3.7 entz group was recognized as the theoretical backbone of
0o 1 0 e 7’ ' coherent states as well as generalized coherent $ttes

) ) ) _ In their recent papdr2], Hanet al. studied in detail pos-
The number of matrices in the chain can be either four okjple optical devices which produce the shear matrices of Eq.
five. We can reach a similar conclusion for the matrix of the(l_l)_ This effect is due to the mathematical identity called
C type. “lwasawa decomposition”[19,20. The shear matrices of
Eq. (1.1 are products of lwasawa decompositions. Since we
IV. OTHER AREAS OF OPTICAL SCIENCE used those shear matrices to produce the most general form

We write the ABCD matrix for the ray transfer matrix of_2><2 unimodular matrices with th_ree real parameters, in
this paper we are performing an inverse process of the

[11]. There are many ray transfers in optics other than par wasawa decomposition.

axial lens optics. For instance, a laser resonator with spheri- . o
. ! ) . S . It should be noted that the decomposition we used in this
cal mirrors is exactly like para-axial lens optics if the radius o . .
: . 2 paper has a specific purpose. If purposes are different, dif-
of the mirror is sufficiently larg¢13]. o .
. . ferent forms of decomposition may be employed. For in-
If wave fronts with phase are taken into account, or for o s
. ; stance, decomposition of th&BCD matrix into shear,
Gaussian beams, the elements of 4#8CD matrix become . .
) . . squeeze, and rotation matrices could serve useful purposes
complex[14,15. In this case, the matrix operation can some- . :
. ! for canonical operator representatidi®,21. The amount
times be written as : . .
of calculation seems to depend on the choice of decomposi-
Aw+B tion. _
w'= CwiD’ 4.1 Group theory in the past was understood as an abstract
mathematics. In this paper, we have seen that it can be used

wherew is a complex number with two real parameters. This@S & calculational tool.
is precisely the bilinear representation of the six-parameter

Lorentz groud 9]. This bilinear representation was discussed APPENDIX A: SQUEEZE AND SHEAR

in detail for polarization optics by Haet al. [16]. This form REPRESENTATIONS OF THE Sp(2) GROUP

of representation is also useful in laser mode-locking and o )

optical pulse transmissidiL5]. The ABCD matrix is a shear representation of the group

The bilinear form of Eq(4.1) is equivalent to the matrix SP(2). The shear matrices of E¢l.1) can be written as
transformatior{ 16]

1l s
v} A B\lv ( )=eX|i—iSXl),
el e 0
U, C DJ/\v, (A1)
: 10
with ( 1) =exp(—iuXy),
= (4.3
w=—. .
[2) with
This bilinear representation deals only with the ratio of the 0 i 00
first component to the second in the column vector to which X1:< ) . X ( . ) , (A2)
the ABCD matrix is applicable. In polarization optics, for 0 0 i 0
instance,v; andv, correspond to the two orthogonal ele-
ments of polarization. which serve as the generators. If we introduce a third matrix
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i 0 In order to transform the above expression into the decom-
X3:(O _.), (A3) position of Eq.(2.1), we take the conjugate of each of the
: matrices with
it generates squeeze transformations: 11 |
—inXs)= : A4
exp(—inXs3) 0 o7 (A4)

ThenC,WC; ! leads to
The matricesX;, X,, and X5 form the following closed set

of commutation relations: (cosd) _Sind’) coshy  sinh7 | [cosk —sin)\)
_ . sing cos¢ |\ sinhy coshy/|sin\  cos\ |’
[X1,X2]=1X3,  [Xq,X3]=—2iXy, (BS)
A5
X Xa1=2iX,. (A5) We can then take another conjugate with
[X2,Xs] 2 jug
The generator; and X, produce the third generatots. 1011
Then these three generators form a closed set of commuta- CZ_E -1 1) (B6)
tion relations for the S{) group(3,10,23.
The Sgi2) group can be generated by two seemingly dif-Tnen the conjugat€,C,WC; C,* becomes
ferent sets of generators, namely the shear-squeeze genera-
tors of E_qs.(A2) and (A3_) and the squeeze-rotation genera- cos¢ —sing|(e” 0 \[cos\ —sin\
tors, which are conventionally expressed as sing  cosp |0 e7)lsinn  cosn | (B7)
1/i O 1/0 i . L " . .
Bl=§ 0 1, =51 o Thls(zex;oressmn is the same as the decomposition given in
-l Eq. (2.1).
(AB) The combined effect o€,C; is
1(0 —i
= — iml4 iml4
2\i o) 1/ ¢ e
CZCIZE(_e—iTrM oiml)" (B8)

when applied to a two-dimensionaly space. The) matrix
generates rotations around the origin whie and B, gen-  |f we take the conjugate of the matri%/ of Eq. (B1) using

erate squeezes along thg axes and along axes rotated by the above matrix, the elements of th& CD matrix become
45°, respectively. It is clear that one representation can be

transformed into the other at the level of generators. The 1 . .
generators of Eq¥A2) and (A3) can be written as A=s(ata™+p+p%),

Xlsz_J, X2=Bz+J, X3=281, (A?)

—i
B=— (a—a*+5-4),
whered, B, andB, are given in Eq(A6). 2

_ (B9)
APPENDIX B: BARGMANN DECOMPOSITION C= I_(a_ a* — B+ B*)
2 1
In his 1947 papef9], Bargmann considered
1
a B D=5 (a+a*—p—p*).
w= ( g o ) (B1) 2

_ _ We can see from this expression that all the elements in the
with aa™ —pBB*=1. There are three independent param-ABCD matrix are real numbers. Indeed, th@ representa-
eters. Bargmann then observed thaand 8 can be written  tion of Eq. (B1) is equivalent to theABCD representation,

as whose components can be written as
a=(coshp)e ' (¢*N, g=(sinhpn)e ' ¢"M. (B2) A= (coshy)cod ¢+ \)+(sinhz)cog p—\),
ThenW can be decomposed into B= —(coshz)sin(¢+\)—(sinhz)sin(¢—\),
i . i (B10)
we|© '* 0 [coshy sinhy)/ie”™ 0 ) C=(coshy)sin(é+\)—(sinh7)sin(s—1\),
- ) ; ix e
0 e sinhyp coshp/\ 0 €
(B3) D= (coshn)cog ¢+ \)—(sinhn)cog ¢p—\).
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